28=-16t^2+1444

Simple and best practice solution for 28=-16t^2+1444 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28=-16t^2+1444 equation:



28=-16t^2+1444
We move all terms to the left:
28-(-16t^2+1444)=0
We get rid of parentheses
16t^2-1444+28=0
We add all the numbers together, and all the variables
16t^2-1416=0
a = 16; b = 0; c = -1416;
Δ = b2-4ac
Δ = 02-4·16·(-1416)
Δ = 90624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{90624}=\sqrt{256*354}=\sqrt{256}*\sqrt{354}=16\sqrt{354}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{354}}{2*16}=\frac{0-16\sqrt{354}}{32} =-\frac{16\sqrt{354}}{32} =-\frac{\sqrt{354}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{354}}{2*16}=\frac{0+16\sqrt{354}}{32} =\frac{16\sqrt{354}}{32} =\frac{\sqrt{354}}{2} $

See similar equations:

| 293=-u+247 | | (4x-1)(5x+2)=0 | | 10/17=14/x | | x+100X2=2500 | | Y=-7.5x+50 | | 4(1+2b)=20+4b | | w^2-6w-36=75 | | -3v+20=-(1-4v) | | -(x+4)=46 | | 7x-20=-16 | | x/1/2=5/3/4 | | 3(a-1)=2a-1 | | -3+x=-3(1+x) | | 3.5(2x+1)-0.5(1-3x)=0 | | A-3b=7 | | 5m-4=10-2m | | 3(9+6x)=81 | | 0.25=g/22+0.146 | | 7k-12=2k+8 | | (2/5)x-(2/7)=(1/7) | | 2d+1/6=2d+6 | | -114=4r+7(1-3r) | | (13b-1)-5(2b+1)=-5 | | 5x-15=7x+7 | | -2÷2/3=x | | 5(x-3)=3x+41 | | z+3−8=​2​​1​​z+6 | | (2y^2-5y-12)/(2y^2-y-6)*(4y^2-5y-6)/(4-y)=0 | | V=x(6-2x)(6-2x) | | 20k+60k=10k+70 | | 4x15+4+3=67 | | Y=4.9t^2+4t |

Equations solver categories